

Parameter Analysis of the VPIN (Volume
synchronized Probability of Informed

Trading) Metric
Jung Heon Song, Kesheng Wu, Horst D. Simon

Lawrence Berkeley National Laboratory

One Cyclotron Road Berkeley, CA 94720

3/1/2014

DISCLAIMER ���

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor the Regents of the University of California, nor any of
their employees, makes any warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the
Regents of the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof or
the Regents of the University of California.

Page 1 of 26

Parameter	 Analysis	 of	 the	 VPIN	 (Volume	 synchronized	 Probability	 of	 Informed	
Trading)	 Metric	

Jung Heon Song, Kesheng Wu, Horst D. Simon

Lawrence Berkeley National Lab

 VPIN (Volume synchronized Probability of Informed trading) is a leading indicator of
liquidity-induced volatility. It is best known for having produced a signal more than hours before
the Flash Crash of 2010. On that day, the market saw the biggest one-day point decline in the
Dow Jones Industrial Average, which culminated to the market value of $1 trillion disappearing,
but only to recover those losses twenty minutes later (Lauricella 2010).

 The computation of VPIN requires the user to set up a handful of free parameters. The
values of these parameters significantly affect the effectiveness of VPIN as measured by the false
positive rate (FPR). An earlier publication reported that a brute-force search of simple parameter
combinations yielded a number of parameter combinations with FPR of 7%. This work is a
systematic attempt to find an optimal parameter set using an optimization package, NOMAD
(Nonlinear Optimization by Mesh Adaptive Direct Search) by Audet, le digabel, and tribes
(2009) and le digabel (2011). We have implemented a number of techniques to reduce the
computation time with NOMAD. Tests show that we can reduce the FPR to only 2%.

To better understand the parameter choices, we have conducted a series of sensitivity
analysis via uncertainty quantification on the parameter spaces using UQTK (Uncertainty
Quantification Toolkit). Results have shown dominance of 2 parameters in the computation of
FPR. Using the outputs from NOMAD optimization and sensitivity analysis, We recommend A
range of values for each of the free parameters that perform well on a large set of futures trading
records.

1.	 Introduction	

1.1 The	 Flash	 Crash	 of	 2010	 	

The May 6, 2010 Flash Crash saw the biggest one-day point decline of 998.5 points
(roughly 9%) and the second largest point swing of 1,010.14 points in the Dow Jones Industrial
Average. Damages were also done to futures trading, with the price of the S&P 500 decreasing
by 5% in the span of 15 minutes, with an unusually large volume of trade was conducted. All of
these culminated to market value of $1 trillion disappearing, but only to recover the losses within
minutes - twenty minutes later, the market had regained most of the 600 points drop (Lauricella
2011). Several explanations were given about the market crash. Some notable ones are:

1. Phillips (2010) listed a number of reports, which pointed out that the Flash Crash is a
result of a “fat-finger trade” in ‘Procter & Gamble,’ leading to a massive stop loss orders

Page 2 of 26

(this theory, however, was quickly dismissed as Procter & Gamble incident came about
after much damage had already been done to the E-mini S&P 500).

2. Some regulators attributed to high frequency traders for exacerbating pricing.
Researchers at Nanex argued that “quote stuffing” – placing and then immediately
canceling large number of rapid-fire orders to buy or sell stocks – forced competitors to
slow down their operations (Bowley 2010).

3. The Wall Street Journal reported a large purchase of put options by the hedge fund
‘Universa Investments,’ and suggested that this might have triggered the Flash Crash
(Lauricella, Patterson 2010).

4. Flood (2010) attributed technical difficulties at the NY Stock Exchange (NYSE) and
ARCA to the evaporation of liquidity.

5. A sale of 75,000 E-mini S&P 500 contracts by Waddell & Reed might have caused the
futures market to collapse (Gordon, Wagner 2010).

6. Krasting (2010) blamed currency movements, especially a movement in the U.S. Dollars
to Japanese Yen exchange rate.

After more than four months of investigation, the U.S. Securities and Exchange

Commission (SEC) and Commodity Futures Trading Commission (CFTC) issued a full report on
the Flash Crash, stating a large mutual fund firm's selling of an unusually large number of E-
Mini S&P 500 contracts, and high-frequency traders' aggressive selling contributed to the drastic
price decline of that day (Goldfarb 2010).

1.2	 VPIN:	 A	 Leading	 Indicator	 of	 Liquidity-‐Induced	 Volatility	 	

A general concern in most of these studies is that the computerized high frequency
trading (HFT) has contributed to the Flash Crash. It is critical for the regulators and the market
practitioners to better understand the impact of high frequency trading, particularly, the
volatility. Most of the existing market volatility models were developed before HFT had widely
been used. We believe that disparities between traditional volatility modeling and high frequency
trading framework have led to the difficulty in CFTC's ability to understand and regulate the
financial market. These differences include new information arriving at irregular frequency, all
models that seek to forecast volatility treating its source as exogenous, and volatility models
being univariate as a result of exogeneity (López de Prado 2011).

A recent paper by Easley, Lopez de Prado, and O'Hara (2012) applies a market

microstructure model to study behavior of prices a few hours before the Flash Crash. The authors
argue that new dynamics in the current market structure culminated to the breakout of the event
and introduced a new form of probability of informed trading - volume synchronized probability
of informed trading (VPIN) - to quantify the role of order toxicity in determining liquidity
provisions (Easley, López de Prado, O’Hara 2011). The paper presents an analysis of liquidity on
the hours and days before the market collapse, and highlights that even though volume was high
and unbalanced, liquidity remained low. Order flow, however, became extremely toxic,
eventually contributing to market makers leaving the market, causing illiquidity.

Figure 1 below shows the VPIN values of E-mini futures during the day of the Flash
Crash. Near 11:55AM on May 6th, the value of VPIN exceeded 90% threshold value, and around

Page 3 of 26

1:08pm, it passed 95%. The VPIN value attained its maximum by 2:30pm, and the market crash
starts to occur at 2:32 pm, which agrees with the CFTC/SEC report. This and other tests on
different trading instruments provide anecdotal evidences that VPIN is effective.

Figure 1 E-mini S&P 500’s VPIN Metric on May 6th (López de Prado 2011)

1.3 Systemic Validation of VPIN

To explore whether VPIN is effective in a generic case, one needs to define an automated
testing mechanism and execute it over a large variety of trading instruments. To this end, Wu,
Bethel, Gu, Leinweber, and Rüebel (2013) adopted a simple definition for VPIN events. A VPIN
starts when the VPIN values cross over a user-defined threshold from below and last for a user-
defined fixed duration. We also call each event is a VPIN prediction, during which we expect the
volatility to be higher than usual. If the volatility is indeed above the average of randomly
selected time intervals of the same duration, we say that the event is a true positive; otherwise, it
is labeled as a false positive. Alternatively, we may also say that the prediction is a true
prediction or a false prediction. Given these definitions, we can use the false positive rate (FPR)
to measure the effectiveness of VPIN predictions. Following the earlier work by López de Prado
(2012), Wu, Bethel, Gu, Leinweber, and Rüebel (2013) chose to use an instantaneous volatility
measure called Maximum Intermediate Return (MIR) to measure the volatility in their automated
testing of effectiveness of VPIN.

In order to apply VPIN predictions on a large variety of trading instruments, Wu, Bethel,

Gu, Leinweber, and Rüebel. (2013) implemented a C++ version of the algorithm. In their test
involving 97 most liquid futures contracts over a 67-month period, the C++ implementation
required approximately 1.5 seconds for each futures contract, which is many orders of magnitude
faster than an alternative. This efficient implementation of VPIN allows them to examine the
effectiveness of VPIN on the largest collection of actual trading data reported in literature.

Page 4 of 26

The VPIN predictions require the user to set a handful of different parameters, such as the
aforementioned threshold on VPIN values and duration of VPIN events. The choices of these
free parameters can affect FPR, the measured effectiveness of VPIN predictions. The authors
computed the number of VPIN events and number of false positive events, and used FPR as the
effectiveness score for VPIN predictions. The computation of VPIN involves a number of free
parameters that must be provided by the users. For each of these parameter choices, the average
FPR value over all 97 futures contracts was computed. After examining 16,000 parameter
combinations, the authors found a collection of the parameter combinations that can reduce the
average false positive rates from 20% to 7%. The best of these parameter combinations are
shown in Table 2. We will provide definitions of the parameters as we describe the details of
VPIN computation in the next section.

Table 2 The 10 parameter combinations that produced the smallest average false positive rate 𝛼

(Wu, Bethel, Gu, Leinweber, Rüebel 2013)
𝜋 (Nominal price) 𝛽

(Buckets
per day)

𝜎
(Support
window)

𝜂
(Event

horizon)

𝜈 (Bucket
volume

classification
parameter)

𝜏
(Threshold
for VPIN)

𝛼
(False

Positive
Rate)

Median 200 1 0.1 1 0.99 0.071
Weighted Median 1000 0.5 0.1 1 0.99 0.071

Weighted Median 200 0.5 0.1 0.25 0.99 0.072

Weighted Median 200 0.5 0.1 1 0.99 0.073

Median 200 1 0.1 10 0.99 0.073
Median 600 0.5 0.1 0.1 0.99 0.074
Median 200 1 0.1 Normal 0.99 0.074

Weighted Median 200 1 0.1 1 0.99 0.074

Weighted Median 200 1 0.25 1 0.99 0.074

Weighted Mean 200 1 0.1 1 0.99 0.075

From Table 2, we see that these parameter combinations differ from each other in many

ways, making it difficult to provide a concise recommendation on how to set these free
parameters of VPIN. This Chapter attempts a more systematic search of the parameter space. We
plan to accomplish this goal in two steps: parameter optimization and sensitivity analysis. First,
we search for the optimal parameters with a popular optimization library NOMAD (Nonlinear
Mesh Adaptive Direct Search) by Audet, Le Digabel, and Tribes (2009), and Le Digabel (2011).
Once the parameters with the minimal FPR values are found, we carry out sensitivity analysis
using an uncertainty quantification software package named UQTK (Uncertainty Quantification
Toolkit) by Sargsyan, Safta, Debusschere, and Najm (2012).

Page 5 of 26

2.	 Definition	 of	 VPIN	

Based on an idealized trading model shown
on the right, Easley, Kiefer, O’Hara, and Paperman
(1996) defined a way to measure the information
imbalance from the observed ratio of buys and sells
in the market. The authors termed the measure
probability of informed trading and used PIN as the
shorthand. To compute PIN, one classifies each
trade as either buy or sell following some
classification rule (Ellis, Michaely, O’Hara, 2000), bins the trades buckets, and then calculates
the relative difference between the buys and sells in each bucket. The probability of informed
trading is the average buy-sell imbalance over a user selected time windows, which we will call
the support window. This support window is typically expressed as the number of buckets.

In their analysis of the Flash Crash of 2010, Easley, López de Prado, and O’Hara (2011)
proposed grouping the trades into equal volume bins and called the new variation the volume
synchronized probability of informed trading (VPIN). The new analysis tool essentially stretches
out the busy periods of the market and compresses the light trading periods. The authors termed
this new virtual timing measure the volume time. Another important parameter in computing
VPIN is the number of buckets per trading day.

An important feature in computing the probability of informed trading is that it does not

actually work with individual trades, but rather with groups of bars, treating each as if it is a
single trade. The trade classification is performed on the bars instead of actual trades. Both bars
and buckets are forms of binning; the difference is that a bar is smaller than a bucket. A typical
bucket might include tens or hundreds of bars. Based on earlier reports, we set the number of
bars per bucket to 30 for the remainder of this work, as it has minor influence on the final value
of the VPIN as shown from the published literature (Easley, López de Prado, O’Hara 2012;
Abad, Yague 2012).

The price assigned to a bar is called the nominal price of the bar. This is a second free

parameter for VPIN. When the VPIN (or PIN) value is high, we expect the volatility of the
market to be high for a certain time period. To make this concrete, we need to choose a threshold
for the VPIN values and a size for the time window.

Following the notation used by Wu, Bethel, Gu, Leinweber, and Rüebel (2013), we

denote the free parameters needed for the computation of the VPIN as follows:

• Nominal price of a bar 𝜋
• Parameter for the Bulk Volume Classification (BVC) 𝜈
• Buckets per day (BPD) 𝛽
• Threshold for VPIN 𝜏
• Support window 𝜎
• Event horizon 𝜂

Page 6 of 26

Next, we provide additional details about these parameters.

Pricing Strategies: VPIN calculations are typically performed in time bars or volume
bars. The most common choice of nominal price of a bar used in practice is the closing price, i.e.,
the price of the last trade in the bar. In this work, we consider the following 5 pricing options
for our analysis: closing prices, unweighted mean, unweighted median, volume-weighted mean,
and volume-weighted median.

Bulk Volume Classification: A common method used to classify a trade as either buyer-
initiated or seller-initiated is via the tick rule, or more formally the Lee-Ready trade
classification algorithm. The method assigns a trade as buy if its price is higher than the
preceding, and as sell if otherwise. This convention depends on the sequential order of trades,
which is not the ideal approach in high-frequency trading. Instead, the bulk volume classification
(BVC) assigns a fraction of the volume to buys and the rest to sells based on the normalized
sequential price change (Easley, López de Prado, O’Hara 2012). Let 𝑉!! denote the buy volume
for bar 𝑗, and the volume of bar to be 𝑉!. We follow the definitions by Easley, López de Prado,
and O’Hara (2012) for the computation of 𝑉!!:

𝑉!! = 𝑉! 𝑍
𝛿!
𝜁

where 𝑍 denotes the cumulative distribution function of either the normal or the student t-
distribution, 𝜁 the standard deviation of 𝛿! , where 𝛿! = 𝑃! − 𝑃!!! , 𝑃! are the prices of a
sequence of volume bars. We also denote the degrees of freedom of 𝑍 by 𝜐, and in the case of the
standard normal distribution, we let 𝜐 = 0. The rest of the volume bar is then considered as sells

𝑉!! = 𝑉! − 𝑉!!

Even though the above formula uses a cumulative distribution function, it does not imply that the
authors have assumed this distribution has anything to do with the actual distribution of the data.
The actual empirical distribution of the data has been used, but according to Easley, López de
Prado, and O’Hara (2012) no improvement was seen in empirical testing. We decided to use the
BVC for its computational simplicity and, as noted by Easley, López de Prado, and O’Hara
(2012), its accuracy, which parallels those of other commonly used classification methods.

The argument of the function 𝑍 can be interpreted as a normalizer of the price changes. In
a traditional trading model, the average price change is subtracted first before dividing by the
standard deviation. In HFT, however, the mean price is much smaller than the standard deviation
𝜁 (Wu, Bethel, Gu, Leinweber, Ruebel 2013). We make use of the results from earlier works by
Easley, López de Prado, and O’Hara (2012) by always using zero as the center of the normal
distribution and the student-t distribution.

By definition, only the most recent few buckets are needed for the computation of the

VPIN value (Easley, Kiefer, O’Hara, Paperman 1996). We call this the support window,
represent it as a fraction of the number of buckets in a day, and denote it by 𝜎. The formula used
to compute the VPIN is (Easley, López de Prado, O’Hara 2012)

Page 7 of 26

𝑉𝑃𝐼𝑁 =
𝑉!! − 𝑉!!

𝑉!

Following the works of earlier authors, we normalize the VPIN values by working with

the following transformation:

Φ 𝑥 =
1
2 1+ erf

𝑥 − 𝜇
2𝜎

where erf is the error function measured by a normal distribution, 𝜇 the mean of the VPIN
values, 𝜎 the standard deviation.

VPIN Event: If the value 𝑥 is a normal distribution with mean 𝜇 and standard deviation
𝜎, then the value Φ 𝑥 denotes the fraction of values that are less than the specific value. This is
a useful transformation as it transforms the value of 𝑥 from an open range to a close range
between 0 and 1. The transformation allows using a single threshold 𝜏 for a variety of different
trading instruments convenient. For example, in earlier tests, Easley, López de Prado, and
O’Hara (2011, 2012) typically used the value 0.9 as the threshold for Φ 𝑥 . Had the VPIN
values followed the normal distribution, this threshold would have meant that a VPIN event is
declared when a VPIN rises above 90% of the values. One might expect that 10% of the buckets
will produce VPIN values above this trigger. If one divides a day’s trading into 100 buckets, one
might expect 10 of the buckets to have VPIN values greater than the threshold, which would
produce too many VPIN events to be useful. However, Wu, Bethel, Gu, Leinweber, and Rüebel
(2013) reported seeing a relatively small number of VPIN events – about one event every two
months. The reason for this observation is the following. First off, the VPIN values do not follow
the normal distribution. The above transformation is a convenient shorthand for selecting a
threshold, not an assumption or validation that VPIN values follow the normal distribution.
Furthermore, we only declare a VPIN event if Φ 𝑥 reaches the threshold from below. If Φ 𝑥
stays above the threshold, we will not declare a new VPIN event. Typically, once Φ 𝑥 reaches
the threshold, it will stay above the threshold for a number of buckets, thus many large Φ 𝑥
values will be included in a single VPIN event. This is another way that the VPIN values do not
follow the normal distribution.

Our expectation is that immediately after a VPIN event is triggered, the volatility of the
market would be higher than normal. To simplify the discussion, we declare the duration of a
VPIN event to be 𝜂 days. We call this time duration the event horizon for the remainder of the
discussion.

False Positive Rate: After we have detected a VPIN event, we next determine if the
given event is a true positive or a false positive. As indicated before, we use MIR to measure the
volatility. Since the MIR can be both positive and negative, two separate average MIR values are
computed: one for the positive MIR and one for the negative MIR. These two values then
establish a normal range. If the MIR of a VPIN event is within this normal range, then it is a
false event; otherwise, it is a true event. We denote the false positive rate by 𝛼, where 𝛼 is

Page 8 of 26

𝛼 =
of False Positive Events

of VPIN Events

The flowchart in Figure 3 summarizes how a VPIN event is classified. When the number

of VPIN events triggered is 0, the above formula is ill defined. To avoid this difficulty, when no
event is detected, we let the number of false positive events to be 0.5 and the number of events
0.5 as well, hence FPR = 1.

Figure 3 Flowchart of how a VPIN event is classified (Wu, Bethel, Gu, Leinweber,
Rüebel 2013)

To quantify the effectiveness of VPIN, we compute the average false positive rate over

the 97 most active futures contracts from 2007 to 2012. For each futures contract, we compute
the VPIN values to determine the number of VPIN events and number of false positive events.
The average FPR reported later is the ratio between the total number of false positive events and
the total number of events. Note that we are not taking average of FPRs of different futures
contracts to compute the overall FPR. Assuming that each time a VPIN that crosses the threshold
from below signals an opportunity for investments – a true event leads to a profitable investment
and a false positive event leads to a losing investment – the FPR we use is the fraction of
“losing” investments. Thus, the overall FPR we use is a meaningful measure of the effectiveness
of VPIN.

Page 9 of 26

3.	 Computational	 Cost	 	

From our tests, we observe that reading the futures contracts and constructing bars are
one of the most time-consuming steps within the algorithm. For example, an analysis on the
computation of VPIN on 9 metal futures contracts over the 67-month period shows that reading
the raw data took 11.93% of the total time and constructing the bars took 10.35%, while the
remaining computation required 10.59% second. In addition, we ranked the computational cost
of each parameter in VPIN. Results show that the construction of the bars is the most time
consuming, followed by bucket volume classification, evaluation of VPIN, transformation of
VPIN using the error function, and calculation of MIR value, i.e., 𝛽 > 𝜈 > 𝜎 > 𝜏 > 𝜂.

To reduce the computational cost, the data is read into memory, and the computations are

arranged so that the constructed bars are stored in memory. This allows all different
computations to be preformed on the bars, with reading the original data again. Furthermore, we
arrange our computations so that the intermediate results are reused as much as possible. For
example, the same VPIN values can be reused when we change the threshold for event triggers
and the event horizon. This knowledge is particularly useful for efficiently testing the sensitivity
of the parameters (we need to calculate VPIN values of a large number of points to construct the
surrogate model to be later used in sensitivity analysis).

Figure 4 shows a breakdown of time needed to construct volume bars with different

pricing options. We see that for the weighted median, it requires as much as 7 times more time
than those of closing, mean, and weighted mean, and for median, as much as 5 times more.

Figure 4 Time (seconds) needed to construct volume bars with different nominal prices

(Wu, Bethel, Gu, Leinweber, Rüebel 2013)

To better take advantage of the multiple cores in a typical CPU, we implemented

multithreaded program to compute false positive rate for each contract independently. Our tests
are performed on an IBM DataPlex machine at the NERSC, which imposes a maximum run time
of single computational job of 72 hours. For almost all tests, our program terminated in less than
72 hours. For those that did not terminate within the time limitation, we restart the test program

0

5

10

15

20

25

30

35

40

ES EC NQ CL YM

T
im

e
in

 s
ec

on
ds

Symbol

Closing Average Weighted Average Median Weighted Median

Figure 2: Time (seconds) needed to construct volume bars with different nominal prices.

a bar in order to compute the median prices [34]. This sorting procedure is very simple and requires only
a few words of working space. Let Nb denote the number of trades in a bar. On average, we expect that
each trade is to be compared log2Nb times in order to compute the median prices. In contrast, the closing
price can be obtained by simply taking the price of the last trade, and the average price can be computed
with one pass through all the trades in a bar. Overall, we expect the cost of computing the closing prices
to be less than the cost of computing the average prices and less than the cost of computing the median
prices. Furthermore, computing the weighted average or weighted median would take slightly more time
than computing their unweighted versions. Figure 2 shows the median time used to form the volume bars
with different nominal prices. These tests generated about 6,000 bars per trading day and about 9,000,000
bars for each commodity type. From these timing values, we see that computing the median prices requires
much more time than computing the closing prices or the average prices.

In constructing the volume bars, we have two free parameters to choose: how to compute the nominal
prices and the size of the volume bars. We denote the pricing strategy with ⇡ in the remaining of this paper.
In this study, we will consider five differ pricing strategies for a volume bar mentioned earlier. The size of a
bar is further discussed in the next section.

4 Bulk volume classification

The computation of VPIN, like many other techniques for analyzing market microstructures, requires us
to determine directions of trades, which is classifying each trade as either as buyer-initiated or seller-
initiated [17], or simply as a buy or a sell [29, 28]. A common method used in the market microstructure
literature is the tick rule or more formally the Lee-Ready trade classification algorithm [29, 38]. The basic
idea of the tick rule is to assign a trade as buy if its price is higher than the preceding trade, as sell if its price
is lower than the preceding trade, and the same type (buy or sell) as the preceding trade if there is no change
in price.

This classification is heavily dependent on the sequential order of trades. Typically, the order of trades
can be determined from the time stamps of the trades. However, in our data as in many other sources of data,
there are frequently many trades with the same time stamp due to high-frequency trading. Another more

6

Page 10 of 26

using the latest values of the free parameters as their new starting points. Although this approach
does succeed in finding the optimal solution, it loses track of the computational history, and
therefore the overall optimization process is not as efficient had we run through the whole test
without interruption. This restart requires more computation time, but should not have affected
the final answers we have found.

4.	 Optimization	 of	 FPR	

The main goal of an optimization software is solving problems of the form

min
!∈!

𝑓(𝑥)

where Ω is a subset of 𝑛-dimensional space with constraints denoted by 𝑐!. The dual of this
problem, finding the maximum, can be easily computed by multiplying the objective function by
−1. There are many ways to numerically solve an optimization. For simple linear programming,
the simplex method is available. For nonlinear problems, one approach is via iterative methods.
Depending on the nature of the objective function, specifically differentiability, one can select
from a number of existing algorithms.

Popular iterative methods that make use of derivative (or by approximation through finite
differences) include quasi-Newton, conjugate gradient, and steepest-descent methods. A major
advantage of using the derivatives is improved rate of convergence. There are also well-known
software packages such as L-BFGS that implement quasi-Newton methods to solve large-scale
optimization problems (Nocedal, Liu 1989).

In the computation of VPIN, the relationship between the free parameters and the final FPR
values is defined through a lengthy computation procedure. There is no obvious ways to evaluate
whether a small change in any of the parameters will produce small changes in FPR. For such a
non-smooth objective function, approximation of its derivative may not lead to desirable
answers. The computational cost of optimization algorithms designed to work without a
derivative can also vary greatly from one problem to another. In this case, a successful search
strategy is via Generalized Pattern Search (GPS) (Audet, Béchardand, Le Digabel 2008). We say
a problem is a blackbox problem if either the objective function(s) or constraints do not behave
smoothly. The MADS algorithm (Audet, Dennis 2006) is an extension of the GPS algorithm
(Torczon 1997; Audet, Dennis 2003), which is itself an extension of the coordinate search
(Davidon 1991). NOMAD is a C++ implementation of MADS algorithm designed for
constrained optimization of a blackbox problem. In this chapter, we deliberately chose NOMAD
as it not only extends the MADS algorithm to incorporate various search strategies, such as VNS
(Variable Neighborhood Search), to identify the global minimum of the objective function(s)
(Audet, Béchardand, Le Digabel 2008), but also targets blackbox optimization under general
nonlinear constraints.

4.1	 MADS	 (Mesh	 Adaptive	 Direct	 Search)	 Algorithm	

Page 11 of 26

The main algorithm utilized in NOMAD is the MADS (Audet, Le Digabel, Tribes 2009;
Le Digabel 2011), which consists of two main steps: search and poll. During the poll step, it
evaluates the objective function 𝑓 and constraints 𝑐! at mesh points near the current value of 𝑥!.
It generates trial mesh points in the vicinity of 𝑥!. It is more rigidly defined than the search step,
and is the basis of the convergence analysis of the algorithm (Audet, Le Digabel, Tribes 2009).
Constraints can be blackboxes, nonlinear inequalities, or Boolean. As for 𝑥, it can also be integer,
binary, or categorical (Le Digabel 2011). Readers interested in detailed explanation on how
different constraints and 𝑥 are treated can refer to Le Digabel (2011).

The MADS algorithm is an extension of the GPS algorithm for optimization problems
which allows polling in a dense set of directions in the space of variables (Audet, Dennis 2008).
Both algorithms iteratively search for a solution, where the blackbox functions are repeatedly
evaluated at some trial points. If improvements are made, they are accepted, and rejected if not.
MADS and GPS generate a mesh at each iteration, and it is expressed in the following way
(Audet, Béchardand, Le Digabel 2008):

𝑀 𝑘,∆! = 𝑥 + ∆!𝐷! ∶ 𝑧 ∈ ℕ!!
!∈!!

where 𝑉! denotes the collection of points evaluated at the start of 𝑘th iteration, ∆! ∈ ℝ! the
mesh size parameter, and 𝐷 a constant matrix with rank 𝑛. 𝐷 is, in general, simply chosen to be
an orthogonal grid of 𝐼! augmented by −𝐼!, i.e., [𝐼! −𝐼!]. The poll directions are not a subset of
this matrix 𝐷, and can still have much flexibility. This is why no more complicated 𝐷 is used.
For readers interested in a detailed discussion of the algorithm, see the paper by Audet,
Béchardand, and Le Digabel (2008).

The search step is crucial in practice for its flexibility, and has the potential to return any
point on the underlying mesh, as long as the search does not run into an out-of-memory error. Its
main function is narrowing down and searching for a point that can improve the current solution.
Figure 5 shows the pseudocode of the MADS algorithm.

Figure 5 MADS algorithm (Audet, Béchardand, Le Digabel 2008)

Page 12 of 26

4.2	 NOMAD	 Optimization	 Results	

Although NOMAD can solve minimization problem involving categorical variables,
doing so will significantly reduce the efficiency of the algorithm for this particular case. A
breakdown of time needed to construct volume bars with different pricing options shows that
weighted median is the most computationally heavy pricing option, with closing price located at
the opposite end of the spectrum. Each pricing strategy was considered separately to reduce the
amount of time needed for each run of the program submitted to the computer. This arrangement
also reduces the complexity of understanding of the parameter space and allows for obtaining a
better solution set. Solutions obtained from different starting points are shown in Table 9. The
optimal parameter combination from Table 9 is

𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼

Median 1528 0.1636 0.033 0.4611 0.9949 0.0340

However, varying initial choices of the parameters under the same pricing strategy is shown to
be inconsistent, which suggests that the global optimal solution might still be out of reach. We
attempted to reach this global optimal solution by enabling the variable neighborhood search
(VNS) strategy.

4.3	 Variable	 Neighborhood	 Search	 (VNS)	 Strategy	

 The VNS is a metaheuristic strategy proposed by Mladenović and Hansen (1997) for not
only solving global optimization problems, but also combinatorial problems. It incorporates a
descent method and a neighborhood structure to systematically search for the global minimum.
For an initial solution 𝑥, the descent method searches through a direction of descent from 𝑥 with
respect to the neighborhood structure 𝑁(𝑥), and proceeds to find the minimum of 𝑓(𝑥) within
𝑁(𝑥). This process is repeated until no improvement is possible.

302 J Glob Optim (2008) 41:299–318

Fig. 1 MADS algorithm
[0] Initializations

x0 ∈ X, ∆0 ∈ R+

k ← 0

[1] Poll and search steps
Search step

evaluate the functions on a finite number
of points of M(k, ∆k)

Poll step
compute p MADS directions Dk ∈ Rn×p

construct the frame Pk ⊆ M(k, ∆k)
with xk, Dk, and ∆k

evaluate the functions on the p points of Pk

[2] Updates
determine the type of success of iteration k
solution update (xk+1)
mesh update (∆k+1)
k ← k + 1
check the stopping conditions, goto [1]

(see [18]). A corollary of this result is that without constraints and if f is strictly differentiable,
then ∇ f (x̂) = 0.

2.2 VNS

The VNS is a metaheuristic proposed by Hansen and Mladenović [25,36], and has been
proved efficient on a large range of problems. More often than not, it is applied to combi-
natorial problems [17,24,26,27], but it is possible to use it with continuous variables as in
[4,16,20] and in the present work.

Two fundamental elements are required to define a VNS method: a descent method and a
neighborhood structure. The descent is a method executing moves with respect to the neigh-
borhood structure, which defines all the different possible trial points reachable from the
current solution. The objective of these moves is to improve the current solution, and are
repeated until no improvement is possible. The last point of the descent is a local optimum
with respect to the neighborhood structure used.

Local searches often terminate in the vicinity of a nearby local optimum. VNS uses a
random perturbation method to attempt to move away from a local optimal solution, far
enough so that a new descent from the perturbed point leads to an improved local optimum,
localized in a new and hopefully deeper valley. The perturbation method relies on the neigh-
borhood structure, and is parametrized by a non negative scalar ξk , the VNS amplitude at
iteration k, which gives the order of the perturbation (it is not necessary small, as the term
“perturbation” might suggests, and “shaking” will be used for the routine executing it). The
implementation details of the perturbation method has to be defined specifically for each type
of problems, as long as the idea of amplitude is defined and dependent of ξk . For example ξk
could be a minimal desired distance between the two points before and after the perturbation,
or the number of random elementary moves leading to the perturbed point. The most effi-
cient perturbation methods are often linked to the problem properties. In the present paper,
a generic perturbation method is described.

A description of the VNS metaheuristic is given in Fig. 2. The algorithm essentially con-
sists of two loops. Each iteration of the inner loop is decomposed into two steps: first the

123
Page 13 of 26

 The neighborhood structure could play a critical role in finding the global optimum. VNS
makes use of a random perturbation method when the algorithm detects it has found a local
optimum. This perturbed value generally differs to a large extent so as to find an improved local
optimum and escape from the previous localized subset of Ω. The perturbation method, which is
parameterized by a non-negative scalar 𝜉!, depends heavily on the neighborhood structure. The
order of the perturbation, 𝜉!, denotes the VNS amplitude at 𝑘th iteration. Figure 6 succinctly
summarizes the algorithm into two steps: the current best solution is perturbed by 𝜉!, and VNS
performs the descent method from the perturbed point. If an improved solution is discovered, it
replaces the current best solution, and 𝜉! is reset to the initial value. If not, a non-negative
number 𝛿 (the VNS increment) is added to 𝜉!, and resumes the descent method. This process is
repeated until 𝜉! reaches/exceeds a maximum amplitude 𝜉max (Audet, Le Digabel, Tribes 2009;
Audet Béchardand, Le Digabel 2008; Mladenović, Hansen 1997).

Figure 6 Pseudocode of VNS (Audet, Béchardand, Le Digabel 2008)

4.4	 VNS	 in	 NOMAD	

The VNS algorithm is incorporated in NOMAD as a search step (called the VNS search). If no
improvement is achieved during MADS’ iteration, new trial points are created closer to the poll
center. The VNS, however, focuses its search on a distant neighborhood with larger perturbation
amplitude. Since the poll step remains the same, as long as the following two conditions are met,
no further works are needed for convergence analysis (Audet, Béchardand, Le Digabel 2008).

1. For each 𝑖th iteration, all the VNS trial points must be inside the mesh 𝑀 𝑖,∆! .
2. Their numbers must be finite.

J Glob Optim (2008) 41:299–318 303

Fig. 2 VNS metaheuristic for
minimizing f : Rn → R [0] Initializations

itmax, ξmax, ξ0, δ ∈ N+

x0 ∈ X
k ← 0, it ← 0

[1] while (it ≤ itmax)
ξk ← ξ0

while (ξk ≤ ξmax)
x ← shaking(xk, ξk)
x ← descent(x)
if f(x) < f(xk)

xk+1 ← x
ξk+1 ← ξ0

else
xk+1 ← xk

ξk+1 ← ξk + δ
k ← k + 1

it ← it + 1

current solution (typically a local optimum) is perturbed with an amplitude factor ξk , and then
a descent is performed from the perturbed point. If a better solution is obtained, it becomes
the new iterate, and the amplitude is reset to its initial value. Otherwise the amplitude is
increased by a value δ > 0 (called the VNS increment) so that the next perturbation will
lead to a point more distant than the previous one. Finally, the inner loop terminates after a
maximum amplitude ξmax is reached.

The outer loop consists in repeating this process i tmax times. The i tmax parameter of the
first level loop is crucial for the efficiency of most VNS implementations. However, in our
context, this loop will implicitly be made by the MADS algorithm, and therefore we fix
i tmax = 1.

3 Coupling the MADS and VNS algorithms

The VNS algorithm and the MADS poll step have a complementary behavior: when no
success has been made during an iteration, the next poll step generates trial points closer
to the poll center, while the VNS explores a more distant region with a larger perturbation
amplitude. This paper proposes to incorporate the VNS method in the MADS algorithm, as a
search step (called the VNS search). The poll step remains unchanged so that the convergence
analysis of MADS still holds.

3.1 General description

The MADS mesh provides a natural neighborhood structure to be used by the two VNS
components (descent and perturbation) and only the update of the perturbation amplitude ξk
has to be made outside of the VNS search step.

The entire convergence analysis of MADS is preserved when the two following conditions
are met: first, at iteration k, all the VNS search trial points must lie on the mesh M(k,#k),
and second, their number must be finite. The general way to define the perturbation and the

123

Page 14 of 26

To use VNS strategy in NOMAD, the user must define a parameter that sets the upper bound for
the number of VNS blackbox evaluations. This number, called VNS_SEARCH, is expressed as
the ratio of VNS blackbox evaluations to the total number of blackbox evaluations. The default
value is 0.75 (Audet, Le Digabel, Tribes 2009).

4.5	 VNS	 Optimization	 Results	

Table 10 shows a collection of optimization results with VNS strategy enabled. The two lowest
FPRs obtained are 2.44% and 2.58%, using the following parameter set, respectively.

Table 7 Non-VNS Optimal parameter sets
𝜋 𝛽 𝜎 𝜂 𝜐 𝜏

Weighted Median 1784 0.0756 0.0093 49.358 0.9936
Mean 1836 0.0478 0.0089 0.9578 0.9952

Even though the improvement is a mere 1%, these data sets are much more valuable for practical
uses (especially the second set). The number of events detected for

𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼
Median 1528 0.1636 0.033 0.4611 0.9949 0.0340

is 1518, whereas those for the two sets in Table 7 are 2062 and 2298. These two sets convey
improved accuracy and precision. Furthermore, the second set of Table 7 detected more VPIN
events than the first and is computationally more efficient. Given the difference in FPR is
minimal,

𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼
Mean 1836 0.0478 0.0089 0.9578 0.9952 0.0258

is more suited to be used in practice. Even so, VNS strategy failed to address the divergence of
FPR when different starting parameters are chosen. We attempted to resolve this issue by
increasing both the maximum blackbox evaluations and VNS_SEARCH.

Table 8 VNS Optimal parameter sets
𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼

Closing 1888 0.1578 0.0480 45.221 0.9942 0.0412
Closing 1600 0.3586 0.0482 10.371 0.9847 0.0458

These two sets were both found with maximum blackbox evaluations of 5,000 and
VNS_SEARCH = 0.75. However, no direct correlation of the values of these parameters with
consistent FPR was observed. Maximum blackbox evaluations was set to 6,000 and
VNS_SEARCH = 0.85. Yet, NOMAD returned FPR that is inferior to the two above.

𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼
Closing 1799 0.6274 0.0662 0 0.9786 0.0578

Page 15 of 26

From Table 10, we observe that the majority of FPR falls consistently within the range of 3-5%.
Even though the optimization procedure consistently produces parameter combinations that give
us FPR between 3 and 5%, the parameter values are actually different. Our next task is to
understand the sensitivity of these parameter choices, that is, how the different parameter choices
affect our effectiveness measure, FPR.

5.	 Uncertainty	 Quantification	 (UQ)	

In many cases of mathematical modeling, we do not have complete knowledge of the system or
its intrinsic variability. These uncertainties arise from different places such as parameter
uncertainty, model inadequacy, numerical uncertainty, parametric variability, experimental
uncertainty, and interpolation uncertainty (Kennedy, O’Hagan 2001). Therefore, even if the
model is deterministic, we cannot rely on a single deterministic simulation (Le Maître, Knio
2010). We must, therefore, quantify the uncertainties through different methods. Validation of
the surrogate model and analysis of variance are frequently used to carry out UQ and sensitivity
analysis.

Validation involves checking whether the surrogate model constructed from the original
model correctly represents our model. Analysis of variance provides users with important
information relevant to design and optimization. The user can identify the controllability of the
system, as measured through sensitivity analysis, and characterize the robustness of the
prediction (Najm, 2009). There are two ways to approach UQ: forward UQ and inverse UQ.
UQTK makes use of the former to perform its tasks.

5.1	 UQTK	

A UQ problem involves quantitatively understanding the relationships between uncertain
parameters and their mathematical model. Two methodologies for UQ are forward UQ and
inverse UQ. The spectral Polynomial Chaos expansion (PCE) is the main technique used for
forward UQ. First introduced by Wiener (1938), polynomial chaos (PC) determines evolution of
uncertainty using a non-sampling based method, when there is probabilistic uncertainty in the
system parameters. Debusschere, Najm, Pébay, Knio, Ghanem, and Le Maître (2004) notes
advantages to using a PCE:

1. Efficient uncertainty propagation
2. Computationally efficient global sensitivity analysis
3. Construction of an inexpensive surrogate model, a cheaper model that can replace the

original for time-consuming analysis, such as calibration, optimization or inverse UQ.

We make use of the orthogonality and structure of PC bases to carry out variance-based
sensitivity analysis.

From a practical perspective, understanding how the system is influenced by uncertainties in
properties is essential. One way of doing so is through analysis of the variance (ANOVA), a
collection of statistical models, which analyzes group mean and variance. The stochastic

Page 16 of 26

expansion of the solution provides an immediate way to characterize variabilities induced by
different sources of uncertainties. This is achieved by making use of the orthogonality of the PC
bases, making the dependency of the uncertain data and model solution obvious.

The Sobol (or the Hoeffding) decomposition of any second-order deterministic functional 𝑓
allows for expressing the variance of 𝑓 in the following way (Le Maître, Knio 2010)

𝑉 𝑓 = 𝑓 − 𝑓∅ ! = 𝑓!!
!∈ !,…,!

!!∅

where 𝑓∅ ≡ 𝑓 . Since 𝑉! 𝑓 ≡ 𝑓! contributes to the total variance among the set of random
parameters 𝑥! , 𝑖 ∈ 𝑠 , this decomposition is frequently used to analyze the uncertainty of the
model. Then for all 𝑠 ∈ 1,… ,𝑁 , we can calculate sensitivity indices as the ratio of the variance
due to 𝑥!, 𝑉! 𝑓 , to 𝑉(𝑓), such that summing up the indices yields 1 (Le Maître, Knio 2010).

𝒮! = 1!∈ !,…,!
!!∅

,𝒮! =
𝑉! !
𝑉 𝑓

The set 𝒮! is Sobol sensitivity indices that are based on variance fraction, i.e., they denote
fraction of output variance that is attributed to the given input.

UQTK first builds quadrature using a user-specified number of sampled points from each
parameter. For each controllable input, we evaluate it with each point of the quadrature to
construct PCE for the model. Next, we create the surrogate model and conduct global sensitivity
analysis using the approach described above.

5.2	 UQ	 Results	

 Based on the formulation of VPIN, it can be readily understood that the objective
function behaves smoothly with respect to the CDF threshold, 𝜏. The higher the cutoff, the
smaller the number of events detected. The objective function must behave smoothly with
respect to its controllable input, so we conducted sensitivity analysis with 𝜏 as the controllable
input, consisting of 19 equidistant nodes in the corresponding interval of Table 11. The
quadrature is generated by taking samples of 5 points from each of 𝛽,𝜎, 𝜂, and 𝜐. The pricing
strategy used here is closing, and this is for practical reasons: Wu, Bethel, Gu, Leinweber, and
Rüebel reported in 2013 relative computational costs for 5 largest futures contracts with different
nominal prices, ranking weighted median, median, weighted average, average, and closing in
descending order (see Figure 4) Because these 5 futures contracts (S&P 500 E-mini, Euro FX,
Nasdaq 100, Light Crude NYMEX, and Dow Jones E-mini) constitute approximately 38.8% of
the total volume, closing price will still be the most efficient strategy for our data set. In addition,
many high frequency traders opt to use closing price in their daily trading.

From Table 12, 𝛽 and 𝜎 are the two most influential parameters. Sobol index of 𝜐 is
reasonable as well, given no uniform behavior of 𝜐 was observed from outputs of NOMAD and

Page 17 of 26

Wu’s paper. We interpret these numbers in the following way: assuming the inputs are uniformly
distributed random variables over their respective bounds, then the output will be a random
uncertain quantity whose variance fraction contributions given below by Sobol indices. We then
plot the semilog of the indices for each value of CDF threshold (Figure 13).

Table 11 Parameter bounds using 5 sampled points, with 𝜏 as the controllable input

 Lower bound Upper bound
𝜋 0 0
𝛽 20 2000
𝜎 0.04 2.0
𝜂 0.003 1.0
𝜐 0 50
𝜏 0.98 0.9999

Table 12 Joint Sobol sensitivity indices

 𝛽 𝜎 𝜂 𝜐
𝛽 0.14684 0.00521 0.02406 8.2694e-05
𝜎 0 0.74726 0.02441 0.00022
𝜂 0 0 0.05407 7.0616e-05
𝜐 0 0 0 0.00020

Figure 13 Semilog of Sobol indices of the 4 parameters

Page 18 of 26

We see from Figure 13 consistent Sobol indices of BPD and its dominance over those of other
paramaters. The indices of support window and event horizon do behave similarly until 𝜏 ≈ 1, at
which point we observe sudden fluctuation of the numbers. This is largely due to abnormal
behavior of the objective function when the CDF threshold is close to 1. If we set the threshold
too high, only a small fraction of events will be detected, in which case the objective function
would return high FPR (refer to Figure 3). Hence, the anomaly is not too unreasonable. The plot
also shows a non-uniform behavior of BVC parameter’s Sobol indices. In addition, its
contribution to overall sensitivity is minimal. When the degree of freedom (𝜐) for the Student’s-t
distribution is large enough, the t-distribution behaves very much like the standard normal
distribution. Figure 13 shows minimal sensitivity from BVC parameter. As such, we let 𝜐 = 0
for the remainder of our studies for computational simplicity. In order to see the sensitivity due
to 𝜏 and how the model behaves with different 𝜋, we set 𝜋 to be the controllable input and
changed the bounds to reflect more practical choices of the parameters.

 Even though 𝜋 is a categorical variable, it is used here as the index at which the
sensitivities are computed. The controllable input is a way to index multiple sensitivity analysis
being performed at once, i.e. the controllable input can be the 𝑥 location where we compute the
sensitivities of the observable of interest, or it could be the index of the categorical value at
which we want to get the sensitivities, or it could even be the index of multiple observables in
the same model for which we want sensitivities. As such, using 𝜋 as the controllable input does
not bar us from carrying out sensitivity analysis.

Table 14 Parameter bounds with 𝜋 as controllable input (5 sampled points)

 Lower bound Upper bound
𝜋 All five pricing strategies
𝛽 200 2000
𝜎 0.05 1.0
𝜂 0.01 0.2
𝜐 0 0
𝜏 0.98 0.999

Table 15 Sobol sensitivity indices

 Pricing Strategies
 Closing Mean Median WMean WMedian
𝛽 0.01485 0.01653 0.01369 0.014465 0.012892
𝜎 0.42402 0.42017 0.41921 0.424548 0.415468
𝜂 0.47059 0.46618 0.47463 0.465356 0.478596
𝜏 0.05595 0.05951 0.05672 0.058370 0.059124

 We then made the mesh even finer by setting the lower and upper bounds to include the
majority of output parameters found in Table 10. The ranges are shown in Table 16. We sought
to find out which parameter is the most influential one in these bounds. From Table 17, we see
that no other parameters except 𝜂 behave in a volatile way. As these bounds did not provide
much insight to other variables, we changed the bounds so that they correspond to the parameters
of the lowest FPRs. Ranges are specified in Table 18. The Sobol indices in Table 19 tell us that 𝛽
and 𝜏 become insignificant when they are chosen in these intervals. 𝜎 and 𝜂, however, are

Page 19 of 26

extremely volatile, and most responsible for the variance of the objective function. We see from
Table 17 and 19 that pricing options play minimal role in contributing to the overall sensitivity.
Within the bounds prescribed in Table 16 and 18, it is suggested that the user select closing,
unweighted mean, or weighted mean for computational efficiency.

Table 16 Parameter bounds with 𝜋 as controllable input (7 sampled points)

 Lower bound Upper bound
𝜋 All five pricing strategies
𝛽 1400 2000
𝜎 0.04 0.5
𝜂 0.003 0.01
𝜐 0 0
𝜏 0.98 0.999

Table 17 Sobol sensitivity indices

 Pricing Strategies
 Closing Mean Median WMean WMedian
𝛽 0.0083 0.0096 0.0096 0.0120 0.0088
𝜎 0.0416 0.0468 0.0480 0.0449 0.0471
𝜂 0.9302 0.9269 0.9255 0.9258 0.9267
𝜏 0.0154 0.0124 0.0128 0.0131 0.0126

Table 18 Parameter bounds with 𝜋 as controllable input (7 sampled points)

 Lower bound Upper bound
𝜋 All five pricing strategies
𝛽 1600 1888
𝜎 0.04 0.628
𝜂 0.008 0.067
𝜐 0 0
𝜏 0.97 0.998

Table 19 Sobol sensitivity indices

 Pricing Strategies
 Closing Mean Median WMean WMedian
𝛽 0.00040 0.00011 0.00011 0.00020 0.00050
𝜎 0.21397 0.22682 0.22386 0.22622 0.21967
𝜂 0.70543 0.68904 0.69084 0.68912 0.69510
𝜏 0.05749 0.06118 0.06136 0.06090 0.06101

 The sensitivity analysis tells us that the range of each parameter we specify affects each
one’s relative importance. Initially, the support window and buckets per day were the dominant
variables. As we made the mesh finer and changed it to correspond to the best results from
NOMAD, we see that the event horizon and the support window become the determining
parameters that control the variance of the objective function. This indicates that when the

Page 20 of 26

number of buckets per day is between 1600 and 1888, and the VPIN threshold is between 0.97
and 0.998, their exact values have little influence on the resulting FPR.

6.	 Conclusion	

We have analytically explored the parameter space of VPIN by rigorously searching for
the global minimum FPR and conducting sensitivity analysis on a number of parameter bounds.
Although we were not successful in finding the global minimizer of FPR, our test results from
VNS optimization displayed some degree of consistency.

To better understand the parameter choices, we used uncertainty quantification to analyze
the objective function’s sensitivity with respect to each parameter. Results indicate oscillatory
behavior of BVC parameter and minimal fluctuations observed in buckets per day, support
window, and event horizon for 𝜏 not too close to 1. Studying changes in variance under different
pricing strategies informed us that within the bounds obtained from NOMAD output, they play
minimal role in determining the FPR.

From our analysis, we suggest using the following ranges of parameters for practical applications
of VPIN:

• Using the mean price within a bar as the nominal price for the bar. Computing mean is
quite efficient. Although there was little to no variation when using other pricing options,
mean did yield one of the lowest FPRs.

• Sensitivity analysis shows the contribution from buckets per day is negligible when its
values are between 1600 and 1800. We suggest using a number that lies in an interval of
about 1836.

• Support window is an important parameter. Even a small perturbation can cause a drastic
difference in FPR. We suggest the user to use a number very close to 0.0478.

• Event horizon is another important variable to consider. Like support window, it is highly
volatile. We suggest the user to use 0.0089.

• CDF threshold is important. However, the analysis shows that as long as we are working
with 𝜏 > 0.98, its influence becomes minimal (but it should never be too close to 1).

Easley, López de Prado, and O’Hara (2010) stated some potential applications of the VPIN
metric:

• Benchmark for execution brokers filling their customers’ orders. The clients can also
monitor their brokers’ actions and measure how effectively they avoided adverse
selection.

• A warning sign for market regulators who can regulate market activity under different
flow toxicity level.

• An instrument for volatility arbitrage.

We	 believe	 that	 results	 from	 our	 optimization	 and	 sensitivity	 analysis	 can	 aid	 in	 improving	
the	 efficiency	 of	 the	 VPIN	 metric.	

Page 21 of 26

	

7.	 References	

1. Abad, David. Yague, Jose. 2012. “From PIN to VPIN: An Introduction to Order Flow
Toxicity”. The Spanish Review of Financial Economics, 10(2):74-83.

2. Audet, C ; Béchardand, V. ; and Le Digabel, S.. 2008. “Nonsmooth optimization through
mesh adaptive direct search and variable neighborhood search”. Journal of Global
Optimization, 41(2):299– 318.

3. Audet, C. ; Le Digabel, S.; and Tribes, C.. 2009. “NOMAD user guide”. Technical
Report G-2009-37.

4. Audet, C. ; Dennis, Jr. J.E. (2006). “Mesh adaptive direct search algorithms for
constrained optimization.” SIAM Journal on Optimization, 17(1):188-217.

5. Audet, C. ; Dennis, Jr. J.E. (2003). “Analysis of Generalized Pattern Searches.” SIAM
Journal on Optimization, 13(3), 889-903.

6. Bowley, Graham. 2010. “Lone $4.1 Billion Sale Led to ‘Flash Crash’ in May”. The New
York Times.

7. Bowley, Graham. 2010. “Stock Swing Still Baffles, Ominously”. The New York Times
8. Audet, C.; Dennis, Jr, J.E.; 2006. “Mesh adaptive direct search algorithms for constrained

optimization”. SIAM Journal on Optimization., 17(1):188-217.
9. Debusschere, B.J.; Najm, H.N.; Pébay, P.P.; Knnio, O.M.; Ghanem, R.G.; Le Maître,

O.P.. 2004. “Numerical Challenges in the use of polynomial chaos representations for
stochastic processes”. SIAM J. Sci. Comp., 26(2):698-719.

10. Easley, D., Kiefer, N. M., O'Hara, M., & Paperman, J. B. (1996). Liquidity, information,
and infrequently traded stocks. The Journal of Finance, 51(4), 1405-1436.

11. Easley, David. López de Prado, Marcos. O’Hara, Maureen. 2011. “The Microstructure of
the ‘Flash Crash’: Flow Toxicity, Liquidity Crashes and the Probability of Informed
Trading”. Journal of Portfolio Management. Vol 37, No. 2, pp. 118-128.

12. Easley, David. López de Prado, Marcos. O’Hara, Maureen. 2012. “Flow toxicity and
liquidity in a high frequency world”. Review of Financial Studies. 25(5):1457,1493.

13. Easley, David. López de Prado, Marcos. O’Hara, Maureen. 2012. “The Volume Clock:
Insights into the High Frequency Paradigm”. http://ssrn.com/abstract=2034858.

14. Ellis, Katrina. Michaely, Roni. O’Hara, Maureen. 2000. “The Accuracy of Trade
Classification Rules: Evidence from NASDAQ”. Journal of Financial and Quantitative
Analysis.

15. Flood, Joe. 2010.“NYSE Confirms Price Reporting Delays That Contributed to the Flash
Crash”. AI5000.

16. Goldfarb, Zachary. 2010. “Report examines May’s ‘Flash Crash,’ expresses concern over
high-speed trading”. The Washington Post.

17. Gordon, Marcy. Wagner, Daniel. 2010. “‘Flash Crash’ Report: Waddell & Reed’s $4.1
Billion Trade Blamed For Market Plunge”. Huffington Post.

18. Kennedy, Marc. O’Hagan, Anthony. 2001. “Bayesian calibration of computer models”.
Journal of the Royal Statistical Society. Series B Volume 63, Issue 3.

19. Krasting, Bruce. 2010. “The Yen Did It”. Seeking Alpha.
20. Lauricella, Tom. 2010. “Market Plunge Baffles Wall Street – Trading Glitch Suspected in

‘Mayhem’ as Dow Falls Nearly 1,000, Then Bounces”. The Wall Street Journal. p. 1.

Page 22 of 26

21. Lauricella, Tom. Patterson, Scott. 2010. “Did a Big Bet Help Trigger ‘Black Swan’ Stock
Swoon?” The Wall Street Journal

22. Lauricella, Tom. Scannell, Kara. Strasburg, Jenny. 2010. “How a Trading Algorithm
Went Awry”. The Wall Street Journal.

23. Le Digabel, S.. 2011. “Algorithm 909: NOMAD: Nonlinear optimization with the MADS
algorithm”. ACM Transactions on Mathematical Software, 37(4):44:1–44:15.

24. Le Maître, O.P. ; Knio, Omar M. 2010. Spectral Methods for Uncertainty Quantification:
With Applications to Computational Fluid Dynamics (Scientific Computation). Springer,
1st edition.

25. López de Prado, Marcos. 2011. Advances in High Frequency Strategies. Madrid,
Complutense University.

26. Mladenović, Nenad. Hansen, Pierre. 1997. “Variable neighborhood search”. Computers
and Optimization Research. 24(11): 1097-1100

27. Najm, H. N. 2009. Uncertainty quantification and polynomial chaos techniques in
computational fluid dynamics. Annual Review of Fluid Mechanics, 41, 35-52.

28. Nocedal, Jorge. D.C. Liu. 1989. On the Limited Memory for Large Scale Optimization.
Mathematical Programming B, 45,3,pp.503-528.

29. Phillips, Matt. 2010. “SEC’s Schapiro: Here’s My Timeline of the Flash Crash”. The
Wall Street Journal.

30. Sargsyan, Khachik. Safta, Cosmin. Debusschere, Bert. Najm, Habib. (2012).
“Uncertainty Quantification given Discontinuous Model Response and a Limited Number
of Model Runs.” SIAM Journal on Scientific Computing., 34(1), B44-B64.

31. Wiener N. 1938. “The Homogeneous Chaos”. American Journal of Mathematics 60(4):
897-936.

32. Wu, Kesheng. Bethel, Wes. Gu, Ming. Leinweber, David. Ruebel, Oliver. 2013. “A Big
Data Approach to Analyzing Market Volatility”. http://dx.doi.org/10.2139/ssr.2274991.

Page 23 of 26

8.	 Acknowledgments	

We would like to thank the Department of Energy’s Workforce Development of Teachers and
Scientists as well as Workforce Development & Education at Berkeley Lab for initially
supporting this research. We would also like to thank Dr. Bert Debusschere for his help with
UQTK.
This work is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 with University of California.

Page 24 of 26

Table 9 Optimization results with different starting points

 Starting Point Final
 𝛽 𝜎 𝜂 𝜐 𝜏 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 # of Events

Closing
200 1 0.25 0 0.99 243 1.0009 0.2484 9.613 0.9902 0.0668 1026
20 1 0.25 0 0.8 121 1.6966 0.3311 5.2338 0.9917 0.0736 746

2000 2 1 50 0.9999 1797 0.1314 0.0130 8.6047 0.9928 0.0401 2058

Mean 200 1 0.25 0 0.99 198 0.9970 0.2520 5.0195 0.9896 0.0759 1126
20 1 0.25 0 0.99 314 1.0003 0.2500 10.061 0.9899 0.0752 995

Median
200 1 0.25 0 0.99 175 1.0205 0.2451 10.954 0.9905 0.0632 1087
20 1 0.25 0 0.8 219 1.0880 0.2500 24.600 0.9937 0.0773 608

2000 2 1 50 0.999 1528 0.1636 0.0327 0.4611 0.9949 0.0340 1518

WMean 200 1 0.25 0 0.99 200 1.0003 0.2501 4.9970 0.9900 0.0787 1073
20 1 0.25 0 0.8 135 1.2246 0.2939 41.608 0.9858 0.0869 1393

WMedian
200 1 0.25 0 0.99 200 0.7063 0.4495 14.9968 0.9900 0.0720 1331
20 1 0.25 0 0.8 273 1.2496 0.4738 9.9808 0.9908 0.0783 832

2000 2 1 50 0.999 1998 1.116 0.9977 49.952 0.9934 0.1060 533

Page 25 of 26

Table 10 VNS Optimization results with different starting points

 Starting Point Final
 𝛽 𝜎 𝜂 𝜐 𝜏 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 # of Events

Closing
1300 1.2 0.25 4 0.99 1799 0.6274 0.0662 0 0.9786 0.0578 1455
200 1 0.003 0 0.99 1888 0.1578 0.0480 45.221 0.9942 0.0412 1184

2000 2 1.0 50 0.9999 1600 0.3586 0.0482 10.371 0.9847 0.0458 1724

Mean
2000 2 1 50 0.9999 1606 0.0565 0.0118 35.361 0.9944 0.0306 2177
200 1 0.003 0 0.99 1845 0.0401 0.0093 14.943 0.9972 0.0319 2300

1300 1.2 0.25 4 0.99 1836 0.0478 0.0089 0.9578 0.9952 0.0258 2298

Median 1300 1.2 0.25 4 0.99 1745 0.0798 0.0156 7.0073 0.9937 0.0369 2005
200 1 0.003 0 0.99 624 0.4338 0.0449 47.891 0.9905 0.0457 1369

WMean 200 1 0.003 0 0.99 1789 0.4539 0.0639 2.4991 0.9905 0.0442 878

WMedian 1300 1.2 0.25 4 0.99 1784 0.0756 0.0093 49.358 0.9936 0.0244 2062
200 1 0.003 0 0.99 1631 0.0433 0.0098 33.763 0.9943 0.0329 2651

Page 26 of 26

	VPINParameterSensitivity-report
	VPINParameterSensitivity-report.2

